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ANALYTICAL DETERMINATION OF COUPLED BENDING-TORSION VIBRATIONS 
OF CANTILEVER BEAMS BY MEANS OF STATION FUNCTIONS1 

By ALEXANDER MENDELSON and SELWYN GENDLER 

SUMMARY 

A method based on the concept of Station Functions is pre- 
sented for calculating the modes and the frequencies of non- 
uniform cantilever beams vibrating in torsion, bending, and 
coupled bending-torsion motion. The method combines some 
of the advantages qf the Rayleigh-Ritz and Stodola methods, in 
that a continuous loading function for the beam is used, with 
the advantages of the in$uence-coejicient method, in that the 
continuous loading function is obtained in terms of the dis- 
placements at aJinite number of stations along the beam. 

The Station Functions were derived for a number of stations 
ranging. from one to eight. The deflections were obtained in 
terms of the physical properties of the beam and Station Num- 
bers, which are general in nature and which have been tabulated 
for easy reference. Examples were worked out in detail; com- 
parisons were made with exact theoretical results. For a uni- 
*form cantilever beam with n stations, the Jirst n modes and 
frequencies were in good agreement with the theoretically exact 
values. The e$ect of coupling between bending and torsion 
was shown to reduce theJirst natural frequency to a value below 
that which it would have if there were no coupling. 

Mykelstad’s iteration procedure (reference 7) or by matrix 
methods (reference 4). 

Any one of these methods can be extended to the calcula- 
tion of coupled bending-torsion modes. The Rayleigh-Ritz 
method usually requires that the uncoupled modes be deter- 
mined before the coupled modes can be computed. In apply- 
ing either the Rayleigh-Ritz or the Stodola method, great 
difficulty is encountered in accurately determining the higher 
modes, because the lower modes must first be “swept out” 
by the use of exact orthogonality conditions (reference 10); 
the process will otherwise always converge back to the 
lowest mode. The same difficulties arc encountered in the 
integral-equation method. 

INTRODUCTION 

The influence-coefficient method reduces the problem to 
one having a finite number of degrees of freedom. The beam 
is divided into n intervals and a concentrated loading is as- 
sumed at the center of gravity of each interval. The solution 
of the resultant determinantal equation gives the first n 
modes. The accuracy of the higher modes is, however, very 
poor; only the first third of the modes and the first half of the 
frequencies are obtained within the usual engineering accu- 
racy. Carrying along so many useless modes greatly in- 
creases the labor involved. 

The failure of turbine and compressor blades due to vibra- 
tions has led to an increased interest in the study of the 
vibrations of these blades and in the determination of the 
natural modes and frequencies. In such theoretical studies, 
it is usually assumed that the compressor or turbine blade 
acts as a cantilever beam. The calculation of the uncoupled 
modes of arbitrarily shaped cantilever beams has been es- 
tensively investigated (references 1 to 4), but little work has 
as yet been done on calculating the coupled modes of such 
beams. If the geometry of the beam is such that coupling 
exists, the coupled modes are the actual vibrational modes 
that must be calculated. 

Four general methods are currently in use for calculating 
uncoupled modes and frequencies of nonuniform beams. 
These methods are the Rayleigh-Ritz or energy method 
(reference l), the Stodola method (references 5 and 6), the 
influence-coefficient method (references 4 and 7), and the 
integral-equation method (references 8 and 9). For each of 
these methods, computational work can usually be carried out 
in several ways. For example, by the use of influence co- 
efficients the modes and frequencies can be determined by 

A straightforward accurate method for determining the 
coupled bending-torsion modes and the frequencies of non- 
uniform cantilever beams, together with applications of this 
method, was developed at the NACA Lewis laboratory dur- 
ing 1949 and is presented herein. This method is based on 
the use of Station Functions as first discussed in refer- 
ence 11. Incorporated in the method are the advantages of 
the continuous-function deflections of the Rayleigh-Ritz 
and Stodola methods together with the advantages of the 
finite number of degrees of freedom of the influence-coefficient 
method. When the method is applied to a uniform beam, 
the first n roots of the resultant determinantal equation are 
amply accurate for engineering purposes. 

The final determinantal equation is solved herein by 
matrix-iteration methods (reference 4). Any other con- 
venient method may, however, be used and no knowledge 
of matrix algebra is needed to carry out the calculations by 
the matrix method. The work can be done by an inexperi- 
enced computer, as the only operations necessary for determ- 
ining each mode are cumulative multiplication and division. 
In addition, for the case in which the coupling coefficient 
remains constant along the beam, a simple quadratic 

* Supersedes NACA TN 2185, “Analytical Determination of Coupled Bending-Torsion Vibrations of Cantilever Beams by Means of Station Functions” by Alexaozkr Mend&on and 
Selwyn Oendkr, 1950. 
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formula and a series of curves are presented for determining 
the first coupled mode in terms of the uncoupled modes. 
Examples are developed in detail and comparisons with 
exact theoretical results are included. 

THEORY 

In the usual influence-coefficient methods for solving 
dynamical problems, a continuous body having an infinite 
number of degrees of freedom is replaced by a body having a 
finite number of degrees of freedom. Two principal assump- 
tions are then made that introduce inaccuracies into the 
solutions, particularly in the higher modes: (1) The resultant 
of the inertia loads of all the infinitesimal masses in a finite 
interval passes through the center of gravity of that interval; 
and (2) a concentrated load that is the resultant of a dis- 
tributed load produces the same deflection as the distributed 
load. An attempt has been made to reduce the error due to 
the second of these assumptions by the use of weighting 
matrices (reference 12). Although the accuracy is thereby 
increased, the effect of the first assumption is still great 
enough to introduce serious errors (reference 11). 

In order to eliminate these assumptions, Rausrher (ref- 
erence 11) introduced the concept of Station Functions. 
Instead of assuming the inertia loads to be concentrated at 
the centers of gravity of the intervals, the inertia loads 
and, consequently, the deflections are assumed to be con- 
tinuous functions along the beam. The values of these 
continuous deflection functions at the reference stations must 
equal the deflections of the reference stations. The loading 
on the beam is therefore a continuous function of the de- 
flections of the reference stations. Inasmuch as the deflec- 
tions of the reference stations can be computed from the 
loading on the beam, which in turn is available from the 
deflections, the deflections are therefore obtained as functions 
of themselves. This procedure gives n homogeneous equa- 
tions in the n deflections of the reference stations. The 
resultant determinantal equation has n roots for the fre- 
quency; it will be shown that for a uniform beam all these 
roots are sufficiently accurate for engineering purposes if 
the deflection functions are properly chosen. (For coupled 
bending-torsion vibrations, 2n homogeneous equations and 
2n roots are obtained for n stations.) 

The deflection functions used must satisfy the boundary 
conditions of the problem and also the condition that, at 
any reference station, the value of the function must equal 
the deflection of the reference station. Although it is always 
possible to find directly a single function that will satisfy 
these conditions, it is more convenient to obtain different 
component functions at each station and to add all these 
component functions together to give the complete deflec- 
tion function. Rauscher (reference 11) calls these compon- 
ent deflection functions Station Functions. For example, 
the complete torsional deflection function for the beam will 
have the following form: 

@z) =gl f&P4 

where 

I(z) 
dimensionless distance along beam 
torsional deflection at distance z from root 

ej torsional deflection at jth station 

ji(z) Station Function in torsion associated with jth station 
(All symbols are defined in appendix A.) 

Each Station Function must satisfy the boundary condi- 
tions of the problem and the following additional conditions: 
(1) At the reference station with which it is associated, the 
Station Function equals the deflection of that reference sta- 
tion; and (2) at all other reference stations, the Station 
Function equals zero. The sum of all these Station Func- 
tions will then give the complete deflection function for the 
beam. The Station Functions and corresponding loading 
functions are derived in appendix B for torsional vibrations, 

FIGURE l.-Cantilever beam with n stations. 

bending vibrations, and coupled bending-torsion vibrations of 
an arbitrary cantilever beam. 

Torsional vibrations--It is shown in appendix B that the 
torsional deflections of the reference stations for a beam 
divided into n intervals of length 6, as shown in figure 1, 
are given by the following system of equations: 

where 

IO n 

i and j=l, 2, . . . n 

w frequency of vibration 
6 length of interval 
1, mass moment of inertia per unit length about elastic 

axis at root section 
In ratio of average mass moment of inertia per unit length 

of kth interval to mass moment of inertia per unit length 
at root section 

CO torsional stiffness of root section 
C, ratio of average torsional stiffness of kth interval to tor- 

sional stiffness at root section 
The Station Numbers N,, and M,, are functions only of the 

integers k, j, and n and are defined as 

(3) 

where jj(z) represents the Station Functions derived in 
appendix B and is given by 

jj(Z)=aljz+a,,z2+. . . +a(,+,),z'n+" (4) 

The coefficients url are determined in appendix B by 
satisfying the conditions on the Station Functions. The 
integrals in equations (3) are thus seen to be integrals of 
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simple polynomials and the limits of integration are integers. 
The Station Numbers N,, and M,, are therefore rational 
numbers, functions only of the integers n, k, and j. These 
numbers have been evaluated and are listed in tables I to 
VIII. 

If the physical properties of the beam under consideration 
are known for each of the n intervals, C, and Ik will be 
known. The Station Numbers N,, and M,& can be obtained 
from tables I to VIII. From equation (2), czij can then be 
easily calculated. 

Equation (1) actually represents n homogeneous equations 
in the n unknown deflections et. With -!- -% =A, these equa- 

tions can be written as follows: 
w2 IfJS2 

(~11-x)el+~12e2+~13e3+. . . +~dn=o ’ 
~21e1+(a22--)e2+a23e3+. . . +aZne,=o 
(Y31e1+CY32e2+((Y33-X)e3+. . . +aQnen=o j (5) 
. . . . . . . . . . . . . . . . . . . 

~nle1+~n2f-4+~d3+. . . +(a,,--pk=o , 

For a nontrivial solution, the determinant of the coefficients 
must vanish and the characteristic equation n bccomcs 

ffll---x ff12 a13 . . . LyllL 

a21 ffzz-A Ct.23 . . , (Yzn 

ff31 ff32 cYz3-x . . . cY31L 

. . . . . . . . . . . . . . . . . . 

~711 G&z %3 * . - WLn -A 

or 

=o (6) 

@a) 
where I is the identity matrix, and [(YJ is the dynamical 
matrix. 

Equation (6) can be solved for the n values of X by any 
method available. The method used herein was to obtain 
the values of A as the latent roots of the matrix [ail], which 
is actually the dynamical matrix for the problem. The mode 
shapes are obtained at the same time. 

Bending Vibrations-The bending deflect,ions for the beam 
shown in figure 1 are given by the following system of equa- 
tions (appendix B) : 

yi=w264 $f ,& prjyj (7) 

where 

btj= gl & 
( mdiP',~- Q'd +r=$+l mr j(i-k+$V',,+ 

(8) 

i and j=1,2, . . . n 

m,, mass per unit length of beam at root section 
rnk ratio of average mass per unit length of kth interval to 

mass per unit length at root section 
B, bending stiffness at root section 
B* ratio of average bending stiffness of kth interval to bend- 

ing stiffness at root section 

The Station Numbers M’jri, N’jk, Pfje, and Qjlc are func- 
tions only of the integers k, j, and n and are defined by 

P'jkrc k 
sr k-l 

&(k-l)z+; (k-l)2] g,(z)dz 

Q~,k~sKI;l [g-i (k - 1)2z +; (k - Q3] g,(z)dz 

(9) 
M’,F S k;, gj(z)dz 

N’/I;= S ’ zg,(z)dz 
k-l J 

The Station Functions g&) are derived in appendix B and 
are given by 

gj(z)= b2jz2+ b3,z3+ L5,jz4+ . . . + b (n+,y) jz cnf3) (10) 
The integrals in equations (9) are thus seen to be integrals 
of simple polynomials. The Station Numbers Mrjt, Nflrc, 
P’je, and Q’,k are rational numbers, functions only of the 
integers j, k, and n. These numbers have been evaluated 
and arc listed in tables I to VIII. 

If the physical properties of the beam are known for each 
of the n intervals, mk and Bk will be known. The Station 
Numbers A41Yl,, N’jl;, Pljr;, a,nd &Ilk are obtained from tables I 
toVII1; pij can then easily bc calculated by equation (8). 

The determinantal equation is: 

@11--x PI2 P;a . . . P,n 

P 21 P22--x P23 . . . Pzn 

P P32 31 P33-x * * . P3n 

. . . . . . . . . . . . . . . . . . . . . 

P n1 Pn2 Pna . . . /L&--X 

31’ 

Ixl-[[Pi~lIrO 
where 

=o (11) 

x=-B” 1 __- 
moS4 w2 

The dynamical matrix is [@,,I. 

Coupled bending-torsion vibration--The torsional and 
Jending deflections due to coupled bending-torsion vibra- 
tions of a cantilever beam are given by (appendix B) : 

where 
To2 es- 
rgo2 

r,s?Bo 
P Co m. 

e. absolute magnitude of projection of distance from elastic 
axis to center of gravity on perpendicular to bending 
direction for root section 

*go radius of gyration about elastic axis at root section 

II 11.1 I... , . . . .._. . . __  .-_--. 



4 REPORT 1 OOB-NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS 

The quantities CY<, and @ (j are defined by equations (2) 
and (8). The quantities yc, and at, are given by 

k3-(k- 1)3 (2k- l)i M. _- 
3 2 1 I> 31 I 

where 

and S, is the ratio of the average stat.ic mass unbalance of 
the kth interval to the static mass unbalance at the root 
section. 

The Station Numbers Pjl; and Qjl; are listed in tables I to 
VIII with the other Station Numbers. The det,erminantal 
equation becomes 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

ran1 ran2 . . . ran,--x dyal aYnz . . . ofnn 
=o 

6 11 6 12 . . 6 In P11--x PI2 . . . Pm 

821 622 . . . 6 2% P 21 P22-A . . . Psn 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

6 nl 6 112 . . . 6 R,l P n1 Pnz . . . Pm--X 

(14) 
or 

IhI-t?lijll=O (144 

where [vij] is the dynamical matrix and I is the identity 
matrix. 

The first n roots of equation (14) will give the first n 
coupled frequencies. 

APPLICATIONS AND RESULTS 

In applying the previously discussed method, it is necessary 
to determine for a given beam the elements aij, pii, yij, and 
sij of the dynamical matrices. These quantities will depend 
on the physical properties of the beam and on the number of 
stations chosen. If the physical properties of the beam are 
known, the quantities aij, pii, yij, and 6ij can be directly cal- 
culated from equations (2)) (8), and (13). The numbers 
Mp:, Njk, Pjk, Qjk, M’ja, N’ib, P’jk, and Q’jk appearing in these 
equations depend on the number of stations n that are used 
and can be read directly from t,ables I to VIII for any given 
number of stations up to eight. Once these quantities have 
been calculated, equations (6), (Il), or (14) can be solved 
for the frequencies by any method desired. The matrix- 

iteration method used herein is simple and rapid and re- 
quires no particular computing skill. As will be indicated, 
however, the accuracy of equations (6), (1 l), and (14) is 
such that relatively few stations need be used, in which 
case it may be convenient to expand the determinants and 
to solve the resultant low-order algebraic equation. 

In order to illustrate the accuracy, this method was applied 
to torsional vibrations, bending vibrations, and coupled vi- 
brations of a uniform cantilever bea.m. The exact theoretical 
values for torsional vibrations and bending vibrations of 
uniform ca,ntilevers are well known. The exact theoretical 
values for the coupled bending-torsion vibration of a uniform 
beam were calculated (appendix D). A comparison was 
then made between the values obtained by the method 
presented and the exact theoretical values. The number of 
stations used was 1, 2, and 3 (n=l, n=2, and n=3). The 
comparisons are summarizecl in table IX. 

Torsional vibration.-For t.he case of a uniform beam, 
C?,=1,= 1 and equation (2) becomes 

The values of Njr and MjI, are given in tables I to VIII. 
The table to be used depencls on the choice of the number 
of stations. 

Let n=l; 
* w1=Nu . . 

From table I, Nll=5/12, 

:. (rn=5/12 
and 

or 
12 c, co ~~=~~~=2.400~ 

The exact theoretical value for the first torsional frequency 
is ,- 

w=1.571 G- 
d I, 12 

The percentage error is - 1.4 when only one station is used. 

The mode shape obtained by the method of Station Func- 
tions agrees well with the theoretical mode shape, as is shown 
in figure 2 (a). 

Let n=2; then by equation (15) and table II, 
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0 .2 .4 .6 .8 
Disfonce from roof z 

Lengfh of beam ’ 7 

0 .4 .6 .8 I.0 
Disfonce from r&t s 

Lengfh of beam ’ i 
((1) First mode, n=X 
(P) Second mode, II,=:<. 
(0 Third mode, n=:S. 

(a) First mode, a=l. 
(h) First nwdc, %=2. 
(cl Second mode, IL=-?. 

Frr.lm~ 2.-Comparison of theoretical mode shapes with mode shapes ahtnined by tnking n statiorls along the beam for torsional vibrations. 

The determinantal equation then becomes 

57 57 -- 
60 A 120 

which gives 

=o 
16 - 
15 

18 x 
15 

X1=1.6214 

Therefore 
x2=0.1953 

J 
- c 

q=1.571 0 I$ 

CO w2=4.526 1,1’ 
J- 

The exact theoretical values are 

ccl w1=1.571 1,12 J- 
CO w,=4.712 1,12 

J- 

The precentage errors of the first two modes, for only two 
stations, are found to be 0 and -4. 

The mode shapes are shown in figures 2 (b) and 2 (c). 
Agreement of the first mode with the exact theoretical shape 
is excellent; the second mode agrees fairly well. 

Let n=3; then by equation (15) and table III, 

an=N,1+Mn+M~3=0.945833 
a,a=Nzl+Mzz+Mg3=0.958333 
c~1~=N~~+M~~+Ms3=0.520834 
an=N,,+N,,+2M~,=l.O33333 
azz=Nz~+N~~+2M~~=1.883333 
~23=N3,+N32+2n133=1.011113 
a~,=N~~+N~~+N~~=1.012500 
a32=Nzl+NzzS-AT,,=2.025000 
c~a=N~~+N~~+N~a=l.387501 

The determinantal equation is 

0.945833-A 0.958333 0.520834 
1.033333 1.883333-A 1.011113 =0 
1.012500 2.025000 1.387501-h 

The solutions are 
X1=3.6474 
x,=0.4093 
x3=0.1599 

Therefore 

wl= 1.571 J c 0 I$ 
CO w2=4.689 p J- 

w,=7.502 $ 
II- 



Disfonce from root X Distance from root x 

Length of beom ’ 7 Length of beam ’ 7 

(a) First mode, n=l. (d) First mode, n=3. 
(b) First mode, a=Z. (e) Second mode, n=3. 
(c) Second mode, n=2 (f) Third mode, n=3. 

FIGURE 3.-Comparison of theoretical mode shapes with mode shapes obtained by taking n stations along the beam for bending vibrations. 

and from table I 

, 
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I.0 

0 

I I I I I I I I I 

The exact theoretical values are 
I 

The percentage errors of the first three modes, calculated 
by use of three stations, are found to be 0, -0.5, and -4.5, 
respectively. 

The mode shapes are shown in figures 2 (d) to 2 (f). The 
first two modes agree very well with the theoretical shapes; 
agreement of the third mode is fair. 

This procedure can be carried out as shown for any number 
of stations desired. 

Bending vibrations.-For a uniform beam, Bk=mk= 1 and 
equation (8) becomes 

k3-(k-l)3 -~ 
3 

@k--1) i 
2 > I) j,,j,. 3r (16) 

Let n=l; 
.-a P11=P’11- &‘lI 

pI=gj-&=g) 
Therefore, from equation (7)) 

w=3.493 $ 
J- 0 

The exact theoretical value is 

The precentage error for just one station is found to be 
-0.65. 

The mode shape is shown in figure 3 (a) and is seen to 
agree very well wit,h the theoretically exact shape. 

Let n=2; then by equation (16) a.nd table II, 

p,,=P’,,-Q’II~~NfI,-~M’~~=0.422745 

L?~~=P’~~- Q121+;N’22-; Mf2,=0.295925 

~21=2P’~~+2P’1~-&‘11- Q’12+~Nf,,-~Mr12=1.145 167 
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The characteristic equation is 

0.422745-A 0.295925 

il.145167 0.905530-A 

The roots are 
A,= 1.2943 

h2=0.0339 

.‘.w,=3.516 3 
J- mo14 

The exact theoretical values are 

=o 

The percentage errors for two stations are therefore found 
to be 0 for the first mode and -1.5 for the second mode. 
The mode shapes are plotted in figures 3 (b) and 3 (c). The 
first mode agrees cxcrlleutly with the theoretically exact 
shape; the second mode agrees fairly well. 

Let n=3; then by equation (16) and table III, 

P,,=P’I,-Q’II+~N’,~+~Nf,3-~ MfI,-; Mf13=0.270604 

&=Pf2,- Q$,+$ N’,J+;N’,,-; M&; M’23= 1.009943 

P13=P’31- Q’a,+;N’s?+;N’,,-; MT,,-; M’33=0.487441 

&,=2P’1,+2P’,p- Q’l,-- Q’,z+ 

;N’,,+ZN’,,-; M&i M’1,=0.648170 

em= 2f”,,f2P’z- Q'r Q'z+ 
;N’,,+2N’gg-; A&,-$ M’23=3.26625O 

/%a= 2P’31+2P’32-- Q's,- Q's,+ 
;N’,,+2N’,,-; i&-; M’,,=1.689891 

P31=3P’,~+3P’12+3P113-Q’,1-Q’12-&1,3+ 

;N’,z+4N1,3-; M’+ M’,,=O.985135 

Psa=3P’zl~3Pr22f3P’23-Q’21-Q’22-Q’23+ 

;N’,,+4N’,,-; ML+ M’,,=5.822852 

P33=3P'31-t3P'82+3Pf33-&131--&132-Q'33+ 

$N’,,+4N’,,-; M&$k’~~=3.204301 

928716-51-2 

The characteristic equation is 
0.270604--x 1.009943 0.487441 

0.648170 3.266250-k 1.689891 

to.985135 5.822852 3.204301-A 

=o 

The roots are 
h1=6.5521 

&=0.1667 

&=0.0223 
Therefore 

w2=22.04 B, 
J- mol” 

IBo w,=60.20 la 

The exact values are 

w1=3.516 B, 
J mo14 

The percentage errors for three stations are found to be 0, 
0, and -2.4, respectively. The modes are plotted in figures 
3 (d) to 3 (f). The first two modes are seen to agree very 
well with the theoretical mode shape; agreement of the 
third mode is fair. 

Coupled bending-torsion vibrations.-A uniform beam 
with the following constants was chosen: 

&=38.56 
%2 

~~0.8 

n2 r=- 
193.2 

n2 

'r=241.5 

The values of LY~, and pii are obtained as previously and are 
the same as given before for n=l, n=2, and n=3. Also, 
because Sk= B,= C,= mk= Ik= 1, equations (13) become 

,$3-(fi-l)3 2k--1 i -- 
3 2 

I? 
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Let n=l; then the determinant is 

0.002156-A 0.001196 
=o 

0.081944-A 

rcql---x eelI 

6 11 PII--A 

The roots are 
X,=0.0837 

x~=0.0005 

we=44.7 
-\i 

u, 
mo14 

The procedure for calculating the exact theoretical values is 
derived in appendix D. The exact values are 

J 
-- 

w,=:3.49 A!!?- 
In,l+ 

w,=49.1 & 
J- m,P 

The percentage error for the first mode, calculated by use of 
one station, is -0.9. 

Let n=2; then the determinant is 

=o 

Substituting the known values and solving for X give for the 
first. two roots 

x,=1.3197 

X,=0.0412 

and the frequencies become 

w1=3.48 “D_ 
J- m$ 

c&=19.7 A- 
J- m,l” 

The percentage errors for two stations are -0.3 for the first 
mode and -4.4 for the scconcl mode. 

This procedure can be carried out for any number of sta- 
tions desired. For three stations, the frequencies obtained 
are 

w1=3.48 $ 
J- 0 

w2=20.6 B” 
J= mo14 

w,=48.2 B, 
J- moP 

The precentage errors are -0.3 for the first mode, 0 for the 
second mode, and - 1.8 for the third mocle. 

The results obtained by the method presented are seen 
to agree very well with the exact thcoreticnl values. 

These results arc summarized in table IX, where a com- 
parison is made with the results obtained for uncoupled 
bending and torsional vibrations by use of influence coeffi- 
cients with weighted matrices (reference 12). The values 
using weighted matrices were taken from table I of refer- 
euce 12. It can be seen that for a given number of stations, 
the results obtained by the method presented herein are con- 
siderably better than those obtained by using influence CO- 

.4 
0 .2 .4 .6 .8 I. 0 

Coupling coefficienf, -5 

efficients with wcightecl matrices. In gcncral, it is inclicatccl 
that for a uniform cantilever beam using 7~ stations along 
the beam, the first. 11-1 frequencies and modes are in es- 
cclIcnt agreement. with exact theoretical vaIues and even 
the nth mode is given within the accuracy with which the 
physical properties of the material are known. For a tapered 
beam, more stations may be required, depending on the 
amount of taper. The number of stations required to give 
satisfactory accuracy is listed in table X. A comparison is 
made by using weighted influence coefficients; the values 
are taken from table II of reference 12. 

The first vibrational frequency is given approximately blr 
equation (C2) (appendix C) when coupling esists between 
bending and torsion; it is plotted in figure 4. In order to 
check these curves, the exact solution was obtained (appen- 
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dix D) for the rat.io (w~/w~)* equal to 4 and was plotted on 
the same figure. The values given by equation (CZ) are 
seen to be in excellent agreement with the theoretically 
exact values. 

The effect of the coupling between bending and torsion 
is to reduce the first natural frequency below that which 
would exist if there were no coupling. This effect is shown 
in figure 4, wherein the value of !J is always less than 1. 
This decrease in the first natural frequency due to coupling 
is, however, relatively unimportant in the practical range of 
(u,,/u,)~>~ and 6<0.75. 

SUMMARY OF RESULTS 
I 

A method based on the use of Station Functions is pre- 
sented for calculating uncoupled and coupled bending-torsion 
modes and frcquencics of arbitrary continuous cantilever 
beams. The results of calculations made by this method 

indicated that by the use of Station Functions derived herein, 
n modes and frequencies can be obtained with sufficient ac- 
curacy by using just n stations along the beam if the beam is 
uniform. For a tapered beam, more stations may be re- 
quired, depending on the amount of taper. The amount of 
computational labor is markedly less than for other methods. 
The use of Station Numbers tabulated herein further re- 
duces the amount of calculat,ion necessary. The effect, of 
coupling between bending and torsion is shown to reduce the 
first natural frequency to a value below that which it would 
have if there were no coupling. 

LEWIS FLIGHT PROXJLSION LABORATORY, 
NATIONAL ADVJSORY COMWITTEE FOR AERONAUTICS, 

CLEVELAND, OHIO, October i8, 1949. 



APPENDIX A 

SYMBOLS 

The following symbols are used in this report: 
ai, 

B 
BO 
Bk 

coefficient in equation for Station Function 
in torsion 

bending stiffness of beam, function of z 
bending stiffness at root section of beam 
ratio of average bending stiffness of kth 

interval to bending stiffness of root 
section 

bij 

C 
co 
4 

coefficient in equation for Station Function 
in bending 

torsional stiffness of beam, function of z 
torsional stiffness of root section of beam 
ratio of average torsional stiffness of kth 

interval to torsional stiffness at root 
section 

Cl, cz, c3 

fjCz) 

g,(z) 

I 

constants defined in appendix B 
Station Fun&on in t,orsion for jt” station 

(defined in text) 
Station Function in bending for jt” station 

(defined in text) 

10 

II, 

mass moment of inertia per unit length of 
beam about elastic axis, function of z, 
escept where otherwise defined 

mass moment of inertia per unit length of 
beam about elastic axis at root section 

ratio of average mass moment of inertia 
per unit length of kth interval to mass 
moment of inertia per unit length at root 
section 

station indices 
summation indices 
length of beam 

Mjky Nj&, P’ 31;l Station Numbers (clefinccl in text) ; function 
Qjk, M’jr;, N’ir, of indices j, k, and n 
P’,,, vjr 

m mass per unit length of beam, function of z 
m0 mass per l.mit length of beam at root section 
me ratio of average mass per unit length of 

kth interval to mass per unit length at 
root section 

n number of stations along beam 
10 

bending loading function on beam 
torsional loading function on beam 
absolute magnitude of projection of distance 

from elastic axis to center of gravity on 
perpendicular to bending direction 

radius of gyration about elastic axis at 
root section 

absolute magnitude of project.ion of dis(.ancc 
from elastic axis to center of gravity on 
perpendicular to bending direction for 
root section 

static mass unbalance, function of z, mr 

static mass unbalance at root section, m,r, 
ratio of avcragc of static mass unbalance at 

kth section to static mass unbalance 
at root section 

distance from root of beam, except whcrc 
otherwise clrfinccl 

bending cleflcct.ion, function of 8 
bending clcflcction at P station 
dimensionless distance along beam, x/S 
elements of dynamical matrix dcfincd in t,ext 

1 10 Bo 
S’ Co m. 
uncoupled frequency ratio, (w[/‘$)’ 
length of interval along beam bctwcen 

two stations 
coupling coefficient, (ro/rKo)’ 
torsional deflection, function of z 
torsional dcflcct ion at, 9” st,at,ion 
root of frequency equation or characteristic 

root of dynamical matrix 
frequency ratio, (w/%)’ 
frequency of vibration 
frequency of unco~~plecl fundamental bend- 

ing mode 
frequency of uncoupled fundamental tor- 

sional mode 
second derivative of deflection with respect 

to time 



APPENDIX B 

STATION FUNCTIONS AND DETERMINANTAL EQUATIONS 

TORSIONAL VIBRATIONS -’ Equation (B5) can be obtained from equation (B5a) by 
carrying out the indicated multipiications. The complete 
deflection function is then given by 

e(z)=fi(z)e,+fi(z)ez+ . . . +.f&m 

=Jgfi(2)si 036) 

The continuous loading function qt (z) can now be written 
as 

A schematic diagram of a cantilever beam divided into n 
intervals of length 6 is shown in figure 1. The Station 
Functions for the torsional vibrations of such a beam must 
satisfy the following conditions: 
At 

2=0 j,(O)=0 031) 
z=n f’Jn)=O U32) 
z=i f&i)= 1 (B3) 
z=j f,(j)=0 j#i (B4) 

wheref’(z) denotes the derivative with respect to z. 
Equations (Bl) and (B2) represent the boundary con.di- 

tions that must bc satisfied by a cantilever beam vibrating 
in t,orsion; equations (B3) and (B4) represent the furthci 
conditions imposctl upon the Station Functions. Tll(W 
conditions will be snt.isfictl by a function of the type 

j~(z)=a,$$a~~z2+ . . . +a(,,+l)$ (?&+I) CBS) 

where the coefficients Uij must satisfy the following simul- 
taneous equations obtained from conditions (B2), (B3), 
and (B4): 

O=(L,~+~~CZ~~+~I&+ . . . +(n-tl)n”aC,+,,I (B2a) 

1=2u,i+i2u,i+i3u,i+ . . . +i (lr+l) 
a(,!, 1)i 0334 

~=~~a,~$j*up~~j~u~i+ . . . +.jOL+l)u(,i+,)i j#i (B4a) 

The cocflicients ui,? can be obtained by solving cquat,ions 
(B2a) to (R4a) and the functions fi(z) detcrmincd for each 
station. Equation (Bs), however, can also be writton in 
the following form: 

II(Z-7>Z(Z-C,) 

where u represents the product for all values of j except 
jzi 

j= i. The function in equation (B5a) obviously satisfies 
conditions (Bl), (B3), and (B4) because it has zeros at all 
points specified by .equation (B4), it equals 1 at the point 
specified by equation (B3), and it equals zero at the point 
specified by equation (Bl). In order to satisfy condition 
(B2), the constant cI is determined by substitution of equa- 
tion (B5a) into equation (B2). 

cl=n for i #n 

c,=n 1+1- 

( > 

for i=n 

l+*j & 

,,cl)=r,ze(,,-l,z~~f,(z)B, (B7) 

A continuous loading fuuction, which is a function of the 
deflections at the reference stations, has thus been obtained. 

BENDING VIBRATIONS 

The Station Functions for the bending vibrations of the 
beam shown in figure 1 must satisfy the following conditions: 
at 

z=o gt(O)=O 038) 

z=o g’i(O)=O !BQ) 
2=n g”&r.) = 0 @lo) 

z=n gIlli( (Bll) 

z=i of(i)= 1 031% 

Z=J !Ji(.ll = 0 j#i (B13) 

where !J’ (z), g” (z), and g”’ (z) denote the first, second, and 
third clrrivativcs, respectively, of g (z) with respect to z. 

Equations (B8) to (Bll) represent the boundary condi- 
tions that must be satisfied by a cantilever beam vibrating 
in bending and equations (Bl2) and (B13) represent the 
additional conditions imposed upon the Station Functions. 

These conditions will be satisfied by functions of the type 

g,(z)= b*&f b,&j- . . . + b (n+3)&(n+3) (B14) 

where the coefficients bi, must satisfy the following equa- 
tions obtained from conditions (BlO) to (B13): . 

O=2bzr+6nbst+. . . +(n+3)(n+2)n’“+‘)btn+3)i (BlOa) 

0=6b,,+24nb,i+. . . +(n+3)(n+2)(n+l)nnb(n+3)f (Blla) 

l=i2b,,+i3b,i+. . . +i(n+3)b(n+3)t (B12a) 

O=jzbzi+j3b3i+. . . +.j(n+3)bcn+3)L j#i (BlW 

The coe5cients can therefore be obtained from equations 
(BlOa) to (B13a) and the functions gr (z) determined for 

11 

..-_. _. _ __. ...--.---___~ 
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each station i. Equation (Bl4) can, however, be written 
in the following form: 

II (2 -J)z2(z2+c22 Sc3) 
g&)d+” 

n (i-j)i’(i”+c,i+c3) 
it’i 

(B14a) 

where II represents the product for all values of j except 

j=;. ?‘he function in equation (B14a) obviously satisfies 
conditions (B8), (B9), (B12), and (B13), because it has 
zeros at all points specified by conditions (B8), (Bg), and 
(B13) and equals 1 at the point specified by equation (Bl2). 
In order to satisfy conditions (BlO) and (Bl l), the constants 
c2 and cQ are determined by substitution of equation (B14a) 
into equations (B10) and (Bll). The general forms for c2 
and cQ are, however, complicated and it is easier to obtain 
the numerical values of these constants for each specific 
case. Equation (Bl4) can then bc obtained from equat,ion 
(B14a) by carrying out the indicated multiplications. The 
complete deflection function is then given by 

?/(2)=$,IIAz)Y1 (B15) 

The continuous bending loading function q,(z) can now be 
written as 

0316) 

COUPLED BENDING-TORSION VIBRATIONS 

The Station Functions for the coupled bending-torsion 
vibrations are the same as previously given for the bending 
vibrations and the torsion vibrations. The loading func- 
tions, however, are given as follows (reference 7): 

n 

= w’~ [ljj(z> Oj + S!/jCz) Z/i1 (BIT) 
j=l 

and 

n 

=W”~ [sfj(~)sj+7nSj(z)?/jl 0318) 

DETERMINANTAL EQUATIONS AND DYNAMICAL MATRICES 

Once the Station Functions and the corresponding loading 
functions have been determined, the deflections at the 
reference stations can be obtained in t.erms of the loading 
function. A homogeneous equation in the reference-station 
deflections for each stat.ion is thereby obtained. The 
determinant of the coefficients of the resultant set of homo- 
geneous equations can be set equal to zero; the determinantal 
frequency equation is thus derived. The deflections at the 
reference stations are obtained by the well-known equations 
for obtaining influence coefficients. 

Torsion.-The deflection at the station i due to the 
continuous loading al(z) on the beam is given by 

o&fn,(z)~ ~d~+s~~~qt(z)~~ 2 dz (B19) 

If C is assumed to have a constant value for each interval, 
these integrals may be written as the sum of integrals over 
each section. Equation (B19) then becomes 

62i 1 

[I 

!i 

ei=G z c 
qtk) dz+ 

, k-1 
J1’,(1 -Wcld4 de+~nt(z) dz] 

033J) 
By substituting the relation 

and by assuming a constant value for I for each interval and 
changing the summation order, 

Then 

where 

I n 0i= W2 FI 6’ ,z l&j Bj (B23) 

~fj-& & [I,Nj,(k-1) I~ib!j~+ 5 IrMj, (B24) 
r=t+1 1 

If Cg= IL= 1 (constant cross section), then 

Lrt, 

Then 

LYE]=& 
1 

Njk-(k-l)lllj,+ 5 iLfj, 
k=l 1 (B25) r=k+1 

~&L 
I 262 ow 

(B26) 

(B23a) 

and the characteristic equation is 

([Cf~j]-All=0 (B27) 

where I is the identity matrix. 
Bending.-The deflect,ion at the station i due to the con- 

tinuous loading q,,(e) on the beam will be given by 

y&L q&)1 -;-&da+ 

fif q&)x -;- dz, dz (B28) 
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If .B is assumed to have a constant value for each interval, 
these integrals may be written as the sum of integrals over 
each interval. Equation (B28) then becomes 

(k&J p0(z)dz-- 

i 
S[ k 

72 z -$ (2k- 1) (rb(Z)dZ + 1 
n J‘[ k 

WW 

By substituting the relation 

71 

!i!o(z)=W*fn C flj(Z)j/j (B3 0) 
j=l 

and by assuming a constant average value for m in each in- 
terval and changing the summation order, 

(B3 I) 

whcrc 

ks-(k-l)” (2k--1) . 
--T---p a 2 > II ~, ,T 

Pjk SE ;-(k- l)i+; (k-I)?] g,(z) dz 

1 

(B32) 

For a uniform beam, ml,=BL=l and equation (B32) be- 
comes 

Let the determinantal equation therefore is 

(B32a) 

(B34j 

then the characteristic equation becomes 

lkkl--x-II=0 (B35) 

where .I is the identity matrix and pi1 is the dynamical ma- 
trix. In expanded form, equation (B35) becomes 

p--x PI2 . . . Pm 

P2l P22--x . . . Pna 

=o (B35a) 
. . . . . . . . . . . . . . . . ~. 

P Ill Pna * . ’ Pm--x 

where x is a latent root of the matrix ]puJ. 

Coupled bending-torsion Vibrations-The deflections at 
station i are given as before by equations (Bl9) and (B28). 
The loading functions q1 and qb are changed as follows: 

al(z)=w*[le(z)+Sy(z)l 
q&j = m*[S e(z) -I- m y(z)1 I WW 

If these two equations are substituted into equations (Big) 
and (B28) and the integrations arc performed as previously, 
the following relation is obtained: 

where aij and pjj arc given in equat.ions (B24) and (B32) and 

k3--(k--j3 _____- 2k-1 i _ __. 
3 2 033% 

where 

pjfi= k 
s II k-l 

&(k-l)z+$ (k-l)*]f,(z)dz 

(k-lj*z+t (k-l)3]j.,(z)dz 

where [vrjJ is the dynamical matrix, the elements of which 
are as indicated in equation (B37). The matrix [qij] is seen to 
be a 2nX2n matrix. 

I 
.-. . . . .._.. _..._-_.- ._ -.. . . . .- ._._ . _ .._ -..._ -_. -- . _- 



APPENDIX C 

QUADRATIC FORMULA FOR FIRST COUPLED MODE 

If only the first vibrational mode is desired, it is possible 1 mass moment of inertia about elastic axis, function of z 
t,o obtain this mode approximately by coupling together the wO frequency of uncoupled fundamental bending mode 
fundamental uncoupled bending mode with the fundamental wI frequency of uncoupled fundament,aI torsional mode 
uncoupled torsional mode to obtain a simple quadratic . . denotes differentiation twice with respect to time 
equation for t.he first coupled frequency. This equation is 
valid when the coupling coefficient c is constant along the 

These equations lead to a quadratic equation in the fre- 

beam. The differential equations obtained by coupling the 
quency ratio W, whose solution for the lowest frequency, 

fundamental uncoupled torsional mode with the funcla- 
provided c is constant along the beam, is 

mental uncoupled bending mode arc: cd* l--y -- $2 =&z-2(1-e) 1 - 14 
,-p_rCl-4 ___. 

(1 --YY 1 632) 

m~j-Slj+mub2y==0 where 
0) 

!s~+Iij+Iw,2e=o I 
fi frequency ratio, (m/w?,)’ 
y uncoupled frequency ratio, (wt/wb)’ 

where e coupling coefficient, (r/l’p)2 

m mass per unit length of beam, function of z This quadratic has been plotted in figure 4 for values of E 
S static mass unbakmce, function of z ranging from 0 to 1 and values of y = (wJw~)~ from 1 to 100. 

APPENDIX D 
EXACT SOLUTION FOR COUPLED BENDING-TORSION VIBRATIONS OF UNIFORM CANTILEVER BEAM 

The differential equations for the equilibrium of an ele- 
ment of a beam vibrating in coupled bending-torsion vibra- 
tions can be put in the following dimensionless form: 

where 

d” Yl ml4 -=- 
dx4 

B ,*r,+g co”Y* 

d*Y, IP 112 ~ =- 
dX2 

e - w*Y,-~ ld*eY* 
c 

r;-yj1 

distance from root XG 
1 

Now 

where 
cd= 12.36 

c,=2.467 

Equations (Dl) become 

d”Y *--E 3 y -c,n y 
(122 Y ’ Y 2 

CD11 

NW 

where 
fi = (ti/&)* 

Let 
Y = ht/~b)* 

dKY 
dx 3 

d‘IT3- ,’ 
-- 4 

dX 

Then 

(D3) 

Equation (D3) can be written as the single matrix equation 

d 
T&z (D4) 

14 
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(D4a) 

where Y and A are the matrices indicated. 
The solution to the matrix equation (D4) is given by 

Y=eAzY 0 (D5) 

where Y. is a column of arbitrary constants. 
From the boundary conditions 

at x=0 Y1= Y2= Y3=0 

x=1 Y4= Y5= Ya= 0 

0 

yo= Y(O) = 
i 

[ 1 

Y,(O) 

F$; 6 

If then Qij is an element of the matrizant eA, the boundary 
conditions give 

!2 44 il 45 E46 

D 54 D 55 Q -0 66 - 033 

a 64 cl 65 !d 66 

Equation (D6) is the frequency equation. It has an infinite 
number of roots for W. 

In order to determine the elements fiij, eA must be evalu- 
ated. Use will be made of Sylvester’s theorem (reference 
13). 

The X matrix of A is 

-A 0 1 0 0 0 

0 -A 0 0 0 1 

0 0 -A 1 0 0 

0 0 0 -A 1 0 

c4Q c4Q 0 0 -A 0 

C& Ga 0 0 0 -A s-c -- 
Y Y 

15 

The characteristic equation A(h) =O is 

P+y X4-c4QX2-(1-e)c4C5~=0 (D7) 

Equation (D7) is a cubic equation in x2. Let the roots be 

x1,--x1, x2,--x2, x3,-x3 

Then by the confluent form of Sylvester’s t,heorem, 

CDS) 
where F(k) is the adjoint matrix, r is the number of distinct 
roots, and C-Q is the multiplicity of the it” root. 

If the roots are all distinct, this relation becomes 

1 where th e a joint matrix F(X) is given by d’ 

(W 
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From equations (D9) and (DlO), the elements Q2,, are seen 
to be given by 

ilr4=-& 
n (b2-b2) 

cash Xi 
i=l 

j#i 

hi”+@ xi2 

fi45= - lg rl$L X,2) 
sinh Xi 

1 1 
j#i 

i&,=-5 
c4fw2+ ?A+ (l--E) 

Xi JII (A,'-Xjq 
sinh xi i=l _: 

j#i 
%5= 344 

3 C4ilAi2 

‘56=- z n (~~2--~2) 
cash xi 

i#i 
il 

3 --EC5- Xi 

‘64=-z H &xj2) 
sinh Xi 

j#i 
Q - eC,j - Xi 

‘65=-g x.n (x.2:-~.?) 
cash Xi 

I z I j#i 
3 

Ai4-c4Q cosh A 
ns6z-~ Jl (A,'-Xj2) 

i 
j#i 

CD1 1) 

The value of the determinant in equation (D6) must be plot- 
ted against the frequency; the value of the frequency for 
which this determinant becomes zero is thereby obtained. 
This procedure involves first solving the cubic equation (D7) 

TABLE I-STATION NUMBERS 

-- 
nr 
N 
P 

Q 

M’ 

N’ 

P’ 

Q’ 

n=l 

>\< 

1 

1 

2 
3 

5 
Tz 

3 
5il 
7 

1% 
2 
Et 
13 
45 
71 

GiJ 
31 

1008 

for each assumed value of frequency parameter and then 
calculating the elements of the determinant from equations 
(Dll). The process is evidently long and laborious. 
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TABLE II-STATION SUMBERS 

n-2 

2 
13 

-48 
31 -- 

240 
-0.037500 

-. 008135 
-. 06Oi95 
-. 034875 
-. 011252 
-. 002G14 

2 
----- 

5 
IS” 

0. o~:ooo 
.029365 
.6272i3 
.851948 
.057955 
.069733 

29 - 

24389 
240 

0.143750 
.181448 
.445X74 
.758G85 

118462 
.150415 
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TABLE III-STATION NUMBERS 

n=3 
TABLE IV-STATION NUMBERS 

n=4 

2 

Sf 1 0. Q5OOOG 0.45oaw -0.05OlmG 
.545R33 

P 
.5875oG -.12u833 

s : z% : ylm; -.005357 -.011756 

N' P’ : EE : %%i: 1: gj;;;: 

Q : %% 
.042560 -. 012798 
.050843 -.028318 

-- 
%  2 -0.525ooO 0.725000 0.475oal 

-.2416G7 P 1.175000 1.091667 
-.OG8452 As -.014583 : E% :068750 031548 

N' 
-.149356 

P’ 
-.083406 : EE 1: I;%:! 

Q’ -.026378 .143948 .057937 -.006034 .181698 
.I27650 

~___ ~- 
M 3 0.235185 N  -0.153704 0.568519 
P : 22X~ --.231944 1.513426 

iI% 
-.023677 

: %%% 
--.028963 .13974Q .316408 

N' 
-.072928 

022325 
P’ :nOFQi2 

-. 111744 1: %E 
Q -.012081 .118fm7 .0015iQ --.014830 

.267865 

I: 
11 j 1 3 4 

M 
N 
P 

A% 
N’ 
P’ 
0’ 

0.429630 -0.051852 
.557937 -. 127249 
.02Q597 -. 006581 
.035167 -. 014547 
.511882 -. 082891 
.676680 -. 203719 
.039616 -. 010651 
.047267 -. 023561 

1 1.022222 
.576455 

: i%z 
.623188 
.413738 
.152256 
.030818 

0.022222 
.076455 
.002612 
.00835Q 
.042276 

: E% 
.018630 

0.518750 -0.085417 
1.207143 --.292857 

.041295 -. 009598 

.090642 --.03oG88 

.544025 -.112648 
1.269193 --.390585 

.044508 -. 015000 

.OQ7745 --.048203 

0.633333 
1.~73810 

: Ed 
.58215X 

1.545802 

: EE 

-0.105QGl 
--.267841 
-.017322 
-.038574 
--.064723 
--.1641GY 
-. 0108R9 
--.024222 

0.522222 
1.729365 

.037202 

.118397 

.643846 
2.164827 

.n60554 

.lQ4016 
__- 

0.543924 
1. QQ72Ofi 

.I36803 

.44672Q 

.438962 
1. G2206R 

117037 
1382752 

0.747917 
1.207143 

: :Ezi 
.667412 

1.091462 
153469 

: 193310 

-0.255556 
-.381746 
--.037401 
--.045624 
-.166738 
--.262823 
-.026235 
--.I132114 

0. nQ485n 

064205 
:on6481 
.OOiQ17 

- 

TABLE VI-STATION NUMBERS 

n=6 
- 

nr N I’ 
.G 
N’ P’ 
Q ’ - 
nr 
N I’ 
2-1 N’ 
P’ 
Q ’ - 
Af 
N 
P 

St 
N’ 
P’ 
Q ’ - 

M 
N  
P 

g 
P’ 
Q  - 

M 
N  
P 

ifff 
N’ 
P’ 
Q  

- 

7 

--  

_-  

.- 

3 4 k 
1 j 

1 

1 

1. 1 iP,JiR 
mwJn 
210393 

.051551 
GiG394 
441260 
1604iG 

: 041lilG 
---..- 
-1. 06li59X 
-_ 4fiGilX 
-, 12x34 
-. 02GROR 
-_ 303Q48 
--.I64215 
-.050692 
-.0113R4 

1.150584 
(489124 

130870 
.112G7lQ 
.267118 
.141177 
: yzwz;; 

__- 
-0.9309G5 
-. 300902 
-. 103G35 
-.n2lnii 
-.210538 
-.I10263 
-.n33225 
-.007320 

0.5817Q6 

: iE% 
.012925 

120308 
:n62735 
.018841 
.004140 

-0.20 220 
1 --.ns 982 

-. 022893 
-.004616 
--.033141 
--.017243 
--.005173 
-.001135 

2 

0.301 Ini 
so1 x.51; 
024fiY5 

: 020221 
.Ji417i 

G21067 
:a34473 
.041021 

-__- 
0. 353 I 0~ 
I. 3G0105 

17fi:i.w 
2209fi!J 
i:j lQQl 

1. 1866R1 
102203 
20R98; 

__-- 
-0. 404200 
-.5972QG 
-, OSRQSG 
--.nGsn60 
-.2755X5 
--.4138lQ 
-.041xn8 
--.050434 

0. 273028 
.399897 
.n36020 
.n43690 
: ;;;g 
.026154 
.031846 

--.- 
-0.156399 
-. 228221 
-. 020218 
-.024486 
-.097119 
--.144lnl 
--.013674 
-."I6634 
-- 

0.054246 
079042 

:noQ657 
.008425 
.02591X 
.0384X 

: EE;: 

o.nlol4Q 
-.04S644 
-.nni498 
-.nnfi322 
-.0186X5 
- .OR3QOl 
-.onzfw 
-.01135n 

n.00887Q 
048522 

1 am143 
.005949 
.015649 

08.5903 
:002241 
."I1694 

-0.035782 
--.I05451 
--.0045Rl 
--.023740 
-.038681 
--.21214! 
-.00550: 
-.0287OC 

TABLE V-STATION NUMBERS 

n=5 
-0. ll3ZAil 0. Ill3321 
-. oill!JiX .0463MJ 
-. 003894 On1823 
-- .nORSQ5 nO586n 
-. 059120 :02fi532 
-.144769 .nQ2370 
-.007337 .00:3631 
--.016206 01 lG74 

- 
2 3 

0. 408i.55 -0. 040898 
5274!l3 

: 02G!JO8 
-, Inn112 
-. l)MOi4 

.031010 --.011210 

.4!12141 --.07029X 
64i.530 -.17248X 
03G908 -.nna~n3 
0439ii -.OlQfii8 

0. 799338 0.403783 
1. 282044 1.14.5470 

16959’J NV952 
.212792 :08X245 

1: Ez; 1: %%F 
.157833 041iO4 

198GlO .091532 -- 

5 

-0. 01:~12ll 
--.058445 
-. OOlfi2i 
-_ nnnx90 
-. 024007 
-. 1071i3Y 
-_ 008375 
--.014228 

l.OQi991 
GO3222 

1202887 
.049943 
.G49902 

42iGlG 

-0.839560 
-.373049 
--.I03119 
--.021583 
-.255330 
-.139170 
--.04323Q 
--.009758 

0.762798 
.329315 
.089079 
.018334 
.lQ7103 

105126 
:032115 
.007151 

-0.548214 
-.233780 
--.062665 
-. 012809 
-. 117990 
-.062435 
-.018958 
-.004201 

0. Ml687 
1. 718204 

: :zE 
63.3812 

1.674943 
148520 

:33579s 

-0.1.59325 
-.400446 
-.0248fi8 
--.065302 
-.136452 
-.344108 
-.021868 
-.048864 

0.050904 

: %% 
.017031 
.n32307 
.081140 
.005002 
.011120 

4 

0. 111QRfili 
OG91~5!l 
002iili 

:008927 
0:349:1!, 
121519 

1 no4824 
.ni5509 

-0. 089550 
-. 310549 
--.ollQ49 
-.n3%3Q8 
-. OQQiz3 
-.345551 
-. 0131RG 
--.042299 

--__ 
0.575298 
1.QWOfi.S 

.049347 

.I57843 
5i.3549 

1.916360 
.n48803 
.156076 

0.57678G 
2.109970 

140460 
:45R397 

2:EE 

: z% 

-0.080137 
-.28375Q 
-.013645 
--.044065 
-. 056459 
- 200039 
-.ooQ675 
-.03124Q 

M 
N 
P 

lc:f 
N’ 
P’ 
(2’ 

M 
N 
P 

iI% 
N’ 
P’ 
Q' 

% 
P 

As 
N’ 
P’ 
Q' 

2 0. 4fi8124 -0. OiO505 
I. 081X9.3 -, 244062 

OR441l -, 00Q20R 
n75401 -.O?Q5G5 
5n3742 --.0x514: 

1. lGQ252 --.2047X 
lXi8896 -. ,111107 

.n853nQ -. 03566: 

0. n44513 
19QQ4X 

: I108452 
.02iSlC 

049iQT 
22132: 

.nn704: 

.n20701 
2 0. 049339 

210544 
1 WRllni 

025243 
1058134 

260447 
:008078 

034055 

3 
- 

0. RQ37Q4 
1.822457 

1RR25Q 
.3,52909 

Gfi21R5 
1: 745286 

152473 
:344556 

-0.104854 
-.488124 
--.n2959.2 
-, nG5iRl 
-.180822 
-.454522 
-.n28221 
-.082753 

0.092907 

: z;: 
.029896 
.081568 

: %E 
.02711Q 

fJ.54G418 
1.822457 
.n45293 

144R"R 

0.08962; 
489124 

:01122: 
nss41r 
08324C 

:4565ns 
.nl1713 
.06109i 

_. _ 
.553477 

1.846431 
.04598n 

146998 
-0.313591 
-.465823 
-.044602 
-.054326 
-.22878X 
-.344015 
-.034085 
--.042759 

-0.128091 
--.55%573 
--.014691 
-. 061603 
-. 137821 
-. 616234 
-.omnn 
--.078385 

4 0.502473 
2.163786 

.142229 
A64052 

2: E% 
143453 

:468015 
__- 
-0.111954 
--.3Q4888 
-.018261 
-.05X920 
-.110987 
-.391731 
-.018226 
--.058815 

-0.17141r 
-.Q33437 
-.020561 
--.106938 
-.166643 
-. 912352 
--.022768 
-_ 118729 

0.624591 
2.720209 

OW6Q8 
:238215 

2: %% 
053359 

.224lno 

0.537351 
2.509279 

.134578 

: E% 
2.499696 

133988 
:571521 

-- 

- 

0.562897 
2.432887 

.042295 
: p7;;; 

2. m64fi 
.063512 
.267043 

M 
N 
P 

I% 
N’ 
P’ 
Q  

.024289 

.004952 

.033722 

.017789 

.005389 

.OOllQ2 

-0.069026 
-.101352 
-.OOQ225 
-. 011196 
-. 031711 
-. 047311 
-.004593 
--.0055Q6 

0.525349 
2.458336 

.134478 
57375i 

:432107 
2.030260 

116059 
: 495663 

-0.030279 
-.075221 
-.0043x7 
-.OOQ587 
--.020586 
-.051417 
-.003042 
-.006753 

0.064035 
-.291427 
-.011243 
-.047575 
-.049677 
-. 225999 
-.008676 
-.036708 

- 
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TABLE VII-STATION NUMBERS 

n=7 

x1 2 3 4 5 6 7 
--I_- 

5 
1 1.243457 0.376396 -0.026266 o.oo9112 -0.005!396 0.006025 -0.006513 

.667340 .490602 -.a63889 .a31590 -.026481 .a33195 -.042X0 
P .218415 .022982 --.003069 .a01211 -. 000353 .OOO925 -.ooo363 

2 

.a53049 
: :.%i; 

-. 006769 .003890 -.003599 .a04529 -.oo5357 
.702229 --.a50122 .a19959 -.012820 .a11370 -.011099 
.454474 

P’ 
: E% 

: f%z 
-.122429 .a69352 -.a57533 .06252?l -.072o80 
--.a06038 .002679 -.001831 .001659 -.001614 

0’ .038456 --.a13441 .a03611 --.a07724 .ooss15 -.010037 
__-___ -___ ____ 

fi 
2 -1.321299 a.905437 0.446479 -0.055674 0.029512 -0.027896 0.028701 

--.570270 1.435730 1.028397 -.192270 .133730 -.153603 
P --.I54452 : ;“2;;;; .a31459 --.007052 -_ 004239 : %Z 
0 -.031847 .a63932 --.a22639 : ii%;; -.022136 .02346.3 

M’ --.357636 764968 
1: 234950 

435193 
1:123273 

-. Oil 706 .03%32 --.a31029 .028988 

5 --.191650 -. 247832 -.17055.5 138216 
--.055807 

: %i: 
036328 

:079621 
-.009168 : E;:~ -.004565 :004199 

0’ --.a13146 -.029438 .a22542 -. 023823 .026110 

M 3 1.672922 -0.511106 0.737737 0.516672 -0.104566 O.OS1487 -0.077078 
N 

: :l%E 
--.75176S 1.931045 l.il8603 --.468955 448232 -.498585 

P -_ 069049 162IR.1 .a40990 --.014225 :a12162 -.010056 

41 
.a37666 -_ 033877 :366024 130953 -. 059956 .a63490 -.062408 
.355047 --.329159 .692136 .532099 --.105454 .a73511 --.a63669 

$$ : ;863m; -. 492459 1.819566 1. 771336 --.484684 4036il 
:010624 

--.41x%5 
-.0454x4 --.014528 -.OO9166 

Of .a12374 -.a59075 :%i : %ii -.061218 .a55439 --.a56987 
____- -__ -~- -- __- 

M 4 -1.605312 0.409927 -0.250374 O.62’&63 0.592219 -0.182666 0.144688 
N --.664780 
P -.I74510 : I%% 

-.625274 2.291470 2.574726 -1.002157 .935220 
--.a37056 147488 .0519a9 -.026098 .018551 

‘41 
--.a35122 .0639O7 -. 052279 : 450975 .218352 -.I36173 .115110 
--.317567 -.216700 .623577 554350 --.157315 115706 

5 -.164912 : c%E --.543417 2.273022 2:53S692 -.861833 :750618 
--.049381 .034761 --.a33166 147041 .a50504 --.a21773 .a16464 

01 --.a10326 .042284 --.a73703 :479557 .212061 --.113560 .102.‘355 
___--- ____ -_ --------__- - ___~ -- -__- 

M 5 I.129029 -0.2R4373 0.134555 -0. 136596 0.551252 0.66S960 -0.220971 
N .464325 -.354003 .334325 --.450675 2.570992 3.539325 -1.425675 
P 121269 --.a33334 .OlQOlO --.021700 .136202 --.a27154 
0 :a24312 -_ 040333 042147 --.a69951 530355 : %E --.I69426 

M’ .234133 -. 16Slb9 : 122950 --.I43020 :5m533 634247 -.I97770 
N’ 

: l%rlE 
--.245403 .306705 --.503655 2.649577 3:397336 --1.2811&S 

P’ --.023166 .a17933 --.a22914 .I39031 .057851 --.a27322 

~~~~~~~---.039907 0’ .a07687 -.028149 -.a73907 .593022 .300912 --.I69318 
__-- ---~ -___-__- 

“N’ 
6 -0.617807 0. 137401 -0.064103 0.054063 -0.054474 0.507772 0.632193 

--.252961 199169 
:01712Q 

-.155887 1x9539 
:607211 

- 383331 2. 883613 4.007039 
I’ -.065852 --.00387X --.(I14243 130010 .a51386 

it:~ 
-.a13170 .020712 --.a19672 .a26453 --.060230 .654756 .318021 
--.125078 OS6131 --.a55376 .a57414 --.a92005 516450 

N’ -.a64447 .I27019 --.I45336 201491 --.417397 2:931074 4:Ez 
P’ -.0191w : y:m&s; --.a03393 :005826 --.a15450 .131144 .a69349 
0’ --.004186 --.018616 .a23441 --.066330 .SQO659 .430362 

____~- ____- -___ 
M 7 0.205449 -0.044613 0.020059 -0.015552 0.021352 -0.053078 0.498306 
N .083943 --.064603 0496i5 --.a55505 .a96798 --.295O79 3.334065 
P .021819 -.a05533 .a02756 --.a02373 aa: -.a09551 

,I% 
.00435s - .006659 .006106 -. 007644 .014713 -.049981 : Es% 
.a33023 -. 022307 .a14642 --.a13579 --.a44219 .420133 

g; .a16993 -.a32878 --.a47602 : EiY -.245636 2.816717 
.a05053 -. 003033 : EE -. 002060 .003074 -.0078~4 

0’ .001102 --.a03652 .00463i --.a06638 .012QY2 --.a41094 
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TABLE VIII-STATION NUMBERS 

A<1 2 3 4 5 0 7 8 
-___ 

# 1 1.312192 .695399 0.364019 -0.021829 0.006490 -0.003545 0.003081 -0.w3931 
.462793 -.a52953 

P 
.a22453 -.a15693 .a16958 -.a25621 O: EL% 

.225483 .021401 -.oo2485 -.ooo499 .cm464 
Q .a54447 .025255 -.OO5476 
M' 

:EiE --.002103 .a02422 Zi%% :EiE 

: .168111 .a43271 :z 

.444367 

$ -.oo5119 -. I: :g;; 011294 

.015242 -.W8698 .OO7082 -.007522 

.577362 .a30533 .a36245 .a52799 .oom3 .oo6433 -.0389&3 -. -. 001220 005146 .a38933 .001045 . Ml5456 -. --.048943 -. 001145 007123 :%z .001228 .ool3863 --___ ~- 
% 2 -1.600390 -.662210 a.955663 1.507998 0.428499 -0.045077 0.020351 -0.016189 0.019610 -0.024337 

.984086 
P 

-. 155335 .a91123 -.089039 .127790 -. 182002 
-. 183160 

: LYi 
.02D123 

$1 
-.oo555o .OQ28O8 -.oo2412 -. 003289 

--.a37524 -.415706 .O63696 -.017807 .011338 --.a12593 :EE --.a23705 
.797175 

N' 
.4@3735 -.O60778 .a28715 -. 021414 .a21627 --.a23284 

-.221089 1.282229 1.082551 
P’ 

-. 209723 -.11766o .14oE86 --.17456o 
--.a67464 

Q’ -.015O18 : FE: : %E;: 
-.oo7611 :lEE -.oo3129 .CC13272 --.@I3421 
--.a24428 .0166fX -.016330 .a20358 -. 024694 ~~ 

2 3 2.337500 .867933 -0.630523 -. 923581 0.780389 0.491625 -0.082648 0.054514 -0.060500 0.071477 
2.036155 

P 
1.631308 -.3G895G .2Q9530 -. 394067 .534419 

.254178 -. 083331 

$1 : .722423 Et 

.a37442 -. 010886 .a07975 -. 009418 

.2406O2 .a51181 .462586 -. -. -. 388839 101109 : K‘z -. --.a45861 091426 .041626 .a56607 -. --.a58605 052469 :EZ .a54058 
579786 1.894495 

P’ 
1.702145 -.4081oo .310711 -. 341167 .405216 

.a72148 --.a56240 160734 
Q :362854 

.040069 -.012016 .008120 --.a07864 .a07911 
.015838 --.a63533 .I27977 -.050617 .a42369 -.048918 .a57107 ___- - -- 

M 4 -2.630070 0.593584 -0.315718 
N 

0.667195 0.556819 -0.143453 0.132430 -0.143916 
-1.075644 .861856 -.786292 

P 
2.424356 2.424356 -.786292 .861856 -1.075644 

-.27985O .a74709 -.045646 
%I 

.U46981 --.020073 .a20253 -. 019152 
-.466670 - .055949 .a90392 -.I01283 : :z: 197214 -. 104712 .I26011 -.138032 

32Y868 -.258293 
N' 

650770 :661588 --.I35711 104892 -. 100193 
--.240468 r 

: :::J,2 
-.646305 

P’ 
21367821 2. 436346 -. 743106 : 681473 -.750348 

-. 071591 -. 033818 
Q ::Ez: 

.047159 -. 018614 015449 
-. U1562i .055337 -.086223 197950 --.a97075 :a96084 

--.a14572 
-.105178 

M 1 2.192995 -0.454U18 
N 

0.201514 -U.l7513U 0.584107 0.633389 -0.237005 0.215982 

: EE: 
-.656778 

P -_ 055Yi.5 : (4E; 
--.614920 2.718847 3.393592 -1.539301 1.613222 

Q 
-. 027134 14109i 

: ml511 
.a58226 --.a34728 .a28253 

: %:1; 
-_ 06i648 0615ii 

:165704 
-_ 0874lin .302906 

M' 
--.215987 .2036OO 

--.253624 
N' 

-.170613 614158 -, 191506 155413 

: t%% 
--.373346 

P' 
.412443 - .599857 2: %E: X:287044 -1.241724 1: 164103 

-.03431(i 
QJ : Ezi 

-.026822 142374 .a54969 --.a27027 .022340 
.u12682 -.041657 --.a86477 :606915 .285874 -.168026 .161236 

___- ___- ___- 
M 6 -1.350286 0.265559 -0.in8064 0.078152 -0.ln2878 0.520374 
N 

0.709714 -0.274441 
-.546005 .383370 --.267117 

I' --.140665 .a32367 -.U14611 
81 

: ;:z 
-.JG(iOO5 2.952258 4.523995 -2.046630 
--.016907 131525 .070024 --.034431 

-.027983 -.263362 .U39093 163432 -. U32351 .a37251 --.U71468 :692634 

N' : 
-. U98083 .a84195 -, 115917 

3: 
543ii8 : i%E 

--.248035 
-.230699 

-. 134575 240192 --.243600 
P’ 

.294907 -.525024 08168i 4.216400 -1.725908 
--.03981U .021885 -.013810 

Q’ 
.a12656 -.019o20 .OG2213 -. 032195 

-.UU8646 .a26552 -. U3Otill .a40765 --.080395 :x .385904 -.232314 
-__ 

z 7 0.054484 -0.124395 o.n48081 -0.n3185fi 0.034801 -U.O66829 0.484484 0.662747 
.2D383i --.liY348 118iO5 

P 
: I%:: 

-.U15052 :U06430 
-_ 111252 1571X -. 370670 3.239551 4.867795 

a/ 
-_ 004626 :UO5472 -. u11570 

: :E 
.n55545 

--.018172 .014232 --.nl4889 -.n60517 .399381 

: 2% 
-.07905i 

N' 
.04538X --.a36054 : tl:El -.n77799 

-. 11m59 
P' : IKE 

--.I26105 189085 -.431248 3:%E 
.723527 

5.337321 
--.nio524 

Q’ : 
nlza --.005328 :UO6593 --.a13324 .072134 

-. 012763 .oi4029 --.Oli155 .02i846 -. 069680 : E%: .519815 
__ __- -----_ ______ ------ 
M 8 -Il.202414 0.037821 
N 

-0. 014268 o.no9in4 -n.OU9307 0.015388 -0.045167 0.487926 
--.U81470 .a54494 -.035205 .a31774 

P 
--.U41992 .085181 -.296574 3.754721 

-. 02094; .004560 
l&J 

--.001898 .OU1312 --.a01443 .002573 --.008294 
-.004150 .a05504 --.OU4201 .a04221 --.a06093 .013452 --.u51711 : 2lE 
--.a33107 --.niio93 

N’ 
.00852i --.a09326 .015O58 -.a39795 

-. 016869 : EE - 
P’ 

--.a27507 .029609 --.042069 .083310 260993 3:%% 
-. 004979 .002618 -.a01541 

Q 
.001252 --.00145U --.a07173 

-. 001080 .a03174 --.a03414 .00402(1 --.a06122 : EE --.a44710 : Ei 
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TABLE IX-COMPARISON OF RESULTS 

Torsion Bending Coupled 

TABLE X-STATIONS REQUIRED FOR SATISFACTORY ACCURACY 
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